Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Front Immunol ; 15: 1293793, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504976

RESUMO

Introduction: Fish ß-parvalbumins are common targets of allergy-causing immunity. The nature of antibody responses to such allergens determines the biological outcome following exposure to fish. Specific epitopes on these allergens recognised by antibodies are incompletely characterised. Methods: High-content peptide microarrays offer a solution to the identification of linear epitopes recognised by antibodies. We characterized IgG and IgG4 recognition of linear epitopes of fish ß-parvalbumins defined in the WHO/IUIS allergen database as such responses hold the potential to counter an allergic reaction to these allergens. Peripheral blood samples, collected over three years, of 15 atopic but not fish-allergic subjects were investigated using a microarray platform that carried every possible 16-mer peptide of known isoforms and isoallergens of these and other allergens. Results: Interindividual differences in epitope recognition patterns were observed. In contrast, reactivity patterns in a given individual were by comparison more stable during the 3 years-course of the study. Nevertheless, evidence of the induction of novel specificities over time was identified across multiple regions of the allergens. Particularly reactive epitopes were identified in the D helix of Cyp c 1 and in the C-terminus of Gad c 1 and Gad m 1.02. Residues important for the recognition of certain linear epitopes were identified. Patterns of differential recognition of isoallergens were observed in some subjects. Conclusions: Altogether, comprehensive analysis of antibody recognition of linear epitopes of multiple allergens enables characterisation of the nature of the antibody responses targeting this important set of food allergens.


Assuntos
Imunoglobulina E , Parvalbuminas , Animais , Humanos , Epitopos , Parvalbuminas/química , Peixes , Alérgenos , Peptídeos
2.
iScience ; 26(12): 108441, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38144451

RESUMO

Susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is highly variable and could be mediated by a cross-protective pre-immunity. We identified 14 cross-reactive peptides between SARS-CoV-2 and influenza A H1N1, H3N2, and human herpesvirus (HHV)-6A/B with potential relevance. The H1N1 peptide NGVEGF was identical to a peptide in the most critical receptor binding motif in SARS-CoV-2 spike protein that interacts with the angiotensin converting enzyme 2 receptor. About 62%-73% of COVID-19-negative blood donors in Stockholm had antibodies to this peptide in the early pre-vaccination phase of the pandemic. Seasonal flu vaccination enhanced neutralizing capacity to SARS-CoV-2 and T cell immunity to this peptide. Mathematical modeling taking the estimated pre-immunity levels to flu into account could fully predict pre-Omicron SARS-CoV-2 outbreaks in Stockholm and India. This cross-immunity provides mechanistic explanations to the epidemiological observation that influenza vaccination protected people against early SARS-CoV-2 infections and implies that flu-mediated cross-protective immunity significantly dampened the first SARS-CoV-2 outbreaks.

3.
Nat Commun ; 14(1): 6527, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845250

RESUMO

We report the application of ancestral sequence reconstruction on coronavirus spike protein, resulting in stable and highly soluble ancestral scaffold antigens (AnSAs). The AnSAs interact with plasma of patients recovered from COVID-19 but do not bind to the human angiotensin-converting enzyme 2 (ACE2) receptor. Cryo-EM analysis of the AnSAs yield high resolution structures (2.6-2.8 Å) indicating a closed pre-fusion conformation in which all three receptor-binding domains (RBDs) are facing downwards. The structures reveal an intricate hydrogen-bonding network mediated by well-resolved loops, both within and across monomers, tethering the N-terminal domain and RBD together. We show that AnSA-5 can induce and boost a broad-spectrum immune response against the wild-type RBD as well as circulating variants of concern in an immune organoid model derived from tonsils. Finally, we highlight how AnSAs are potent scaffolds by replacing the ancestral RBD with the wild-type sequence, which restores ACE2 binding and increases the interaction with convalescent plasma.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , Soroterapia para COVID-19 , Ligação de Hidrogênio , Organoides , Glicoproteína da Espícula de Coronavírus/genética , Ligação Proteica
4.
Nucleic Acids Res ; 51(16): e86, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37548401

RESUMO

In adaptive immune receptor repertoire analysis, determining the germline variable (V) allele associated with each T- and B-cell receptor sequence is a crucial step. This process is highly impacted by allele annotations. Aligning sequences, assigning them to specific germline alleles, and inferring individual genotypes are challenging when the repertoire is highly mutated, or sequence reads do not cover the whole V region. Here, we propose an alternative naming scheme for the V alleles, as well as a novel method to infer individual genotypes. We demonstrate the strengths of the two by comparing their outcomes to other genotype inference methods. We validate the genotype approach with independent genomic long-read data. The naming scheme is compatible with current annotation tools and pipelines. Analysis results can be converted from the proposed naming scheme to the nomenclature determined by the International Union of Immunological Societies (IUIS). Both the naming scheme and the genotype procedure are implemented in a freely available R package (PIgLET https://bitbucket.org/yaarilab/piglet). To allow researchers to further explore the approach on real data and to adapt it for their uses, we also created an interactive website (https://yaarilab.github.io/IGHV_reference_book).


Assuntos
Genômica , Cadeias Pesadas de Imunoglobulinas , Receptores de Antígenos de Linfócitos B , Alelos , Genótipo , Receptores de Antígenos de Linfócitos B/genética , Cadeias Pesadas de Imunoglobulinas/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-37388275

RESUMO

Analysis of an individual's immunoglobulin or T cell receptor gene repertoire can provide important insights into immune function. High-quality analysis of adaptive immune receptor repertoire sequencing data depends upon accurate and relatively complete germline sets, but current sets are known to be incomplete. Established processes for the review and systematic naming of receptor germline genes and alleles require specific evidence and data types, but the discovery landscape is rapidly changing. To exploit the potential of emerging data, and to provide the field with improved state-of-the-art germline sets, an intermediate approach is needed that will allow the rapid publication of consolidated sets derived from these emerging sources. These sets must use a consistent naming scheme and allow refinement and consolidation into genes as new information emerges. Name changes should be minimised, but, where changes occur, the naming history of a sequence must be traceable. Here we outline the current issues and opportunities for the curation of germline IG/TR genes and present a forward-looking data model for building out more robust germline sets that can dovetail with current established processes. We describe interoperability standards for germline sets, and an approach to transparency based on principles of findability, accessibility, interoperability, and reusability.

6.
Cell Rep Methods ; 3(5): 100475, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37323567

RESUMO

Phenotypic drug discovery (PDD) enables the target-agnostic generation of therapeutic drugs with novel mechanisms of action. However, realizing its full potential for biologics discovery requires new technologies to produce antibodies to all, a priori unknown, disease-associated biomolecules. We present a methodology that helps achieve this by integrating computational modeling, differential antibody display selection, and massive parallel sequencing. The method uses the law of mass action-based computational modeling to optimize antibody display selection and, by matching computationally modeled and experimentally selected sequence enrichment profiles, predict which antibody sequences encode specificity for disease-associated biomolecules. Applied to a phage display antibody library and cell-based antibody selection, ∼105 antibody sequences encoding specificity for tumor cell surface receptors expressed at 103-106 receptors/cell were discovered. We anticipate that this approach will be broadly applicable to molecular libraries coupling genotype to phenotype and to the screening of complex antigen populations for identification of antibodies to unknown disease-associated targets.


Assuntos
Neoplasias , Biblioteca de Peptídeos , Humanos , Antígenos , Anticorpos , Técnicas de Visualização da Superfície Celular
8.
Proc Natl Acad Sci U S A ; 120(15): e2217590120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37011197

RESUMO

Antibodies play a central role in the immune defense against SARS-CoV-2. Emerging evidence has shown that nonneutralizing antibodies are important for immune defense through Fc-mediated effector functions. Antibody subclass is known to affect downstream Fc function. However, whether the antibody subclass plays a role in anti-SARS-CoV-2 immunity remains unclear. Here, we subclass-switched eight human IgG1 anti-spike monoclonal antibodies (mAbs) to the IgG3 subclass by exchanging their constant domains. The IgG3 mAbs exhibited altered avidities to the spike protein and more potent Fc-mediated phagocytosis and complement activation than their IgG1 counterparts. Moreover, combining mAbs into oligoclonal cocktails led to enhanced Fc- and complement receptor-mediated phagocytosis, superior to even the most potent single IgG3 mAb when compared at equivalent concentrations. Finally, in an in vivo model, we show that opsonic mAbs of both subclasses can be protective against a SARS-CoV-2 infection, despite the antibodies being nonneutralizing. Our results suggest that opsonic IgG3 oligoclonal cocktails are a promising idea to explore for therapy against SARS-CoV-2, its emerging variants, and potentially other viruses.


Assuntos
COVID-19 , Imunoglobulina G , Humanos , Opsonização , SARS-CoV-2 , Fagocitose , Anticorpos Monoclonais/farmacologia
9.
J Allergy Clin Immunol ; 152(1): 214-229, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36828082

RESUMO

BACKGROUND: Allergic disease reflects specific inflammatory processes initiated by interaction between allergen and allergen-specific IgE. Specific immunotherapy (SIT) is an effective long-term treatment option, but the mechanisms by which SIT provides desensitization are not well understood. OBJECTIVE: Our aim was to characterize IgE sequences expressed by allergen-specific B cells over a 3-year longitudinal study of patients with aeroallergies who were undergoing SIT. METHODS: Allergen-specific IgE-expressing clones were identified by using combinatorial single-chain variable fragment libraries and tracked in PBMCs and nasal biopsy samples over a 3-year period with antibody gene repertoire sequencing. The characteristics of private IgE-expressing clones were compared with those of stereotyped or "public" IgE responses to the grass pollen allergen Phleum pratense (Phl p) 2. RESULT: Members of the same allergen-specific IgE lineages were observed in nasal biopsy samples and blood, and lineages detected at baseline persisted in blood and nasal biopsy samples after 3 years of SIT, including B cells that express IgE. Evidence of progressive class switch recombination to IgG subclasses was observed after 3 years of SIT. A common stereotyped Phl p 2-specific antibody heavy chain sequence was detected in multiple donors. The amino acid residues enriched in IgE-stereotyped sequences from seropositive donors were analyzed with machine learning and k-mer motif discovery. Stereotyped IgE sequences had lower overall rates of somatic hypermutation and antigen selection than did single-chain variable fragment-derived allergen-specific sequences or IgE sequences of unknown specificity. CONCLUSION: Longitudinal tracking of rare circulating and tissue-resident allergen-specific IgE+ clones demonstrates persistence of allergen-specific IgE+ clones, progressive class switch recombination to IgG subtypes, and distinct maturation of a stereotyped Phl p 2 clonotype.


Assuntos
Anticorpos de Cadeia Única , Humanos , Anticorpos de Cadeia Única/genética , Estudos Longitudinais , Dessensibilização Imunológica , Alérgenos , Phleum , Imunoglobulina E , Imunoglobulina G , Evolução Clonal , Proteínas de Plantas , Poaceae
10.
Front Immunol ; 14: 1330153, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38406579

RESUMO

Introduction: Analysis of an individual's immunoglobulin (IG) gene repertoire requires the use of high-quality germline gene reference sets. When sets only contain alleles supported by strong evidence, AIRR sequencing (AIRR-seq) data analysis is more accurate and studies of the evolution of IG genes, their allelic variants and the expressed immune repertoire is therefore facilitated. Methods: The Adaptive Immune Receptor Repertoire Community (AIRR-C) IG Reference Sets have been developed by including only human IG heavy and light chain alleles that have been confirmed by evidence from multiple high-quality sources. To further improve AIRR-seq analysis, some alleles have been extended to deal with short 3' or 5' truncations that can lead them to be overlooked by alignment utilities. To avoid other challenges for analysis programs, exact paralogs (e.g. IGHV1-69*01 and IGHV1-69D*01) are only represented once in each set, though alternative sequence names are noted in accompanying metadata. Results and discussion: The Reference Sets include less than half the previously recognised IG alleles (e.g. just 198 IGHV sequences), and also include a number of novel alleles: 8 IGHV alleles, 2 IGKV alleles and 5 IGLV alleles. Despite their smaller sizes, erroneous calls were eliminated, and excellent coverage was achieved when a set of repertoires comprising over 4 million V(D)J rearrangements from 99 individuals were analyzed using the Sets. The version-tracked AIRR-C IG Reference Sets are freely available at the OGRDB website (https://ogrdb.airr-community.org/germline_sets/Human) and will be regularly updated to include newly observed and previously reported sequences that can be confirmed by new high-quality data.


Assuntos
Genes de Imunoglobulinas , Imunoglobulinas , Humanos , Imunoglobulinas/genética , Alelos , Recombinação V(D)J/genética , Células Germinativas
11.
Front Allergy ; 3: 859126, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769580

RESUMO

Allergic diseases affect many individuals world-wide and are dependent on the interaction between allergens and antibodies of the IgE isotype. Allergen-specific immunotherapy (AIT) can alter the development of the disease, e.g., through induction of allergen-specific IgG that block allergen-IgE interactions. The knowledge of epitopes recognized by allergy-causing and protective antibodies are limited. Therefore, we developed an allergome-wide peptide microarray, aiming to track linear epitope binding patterns in allergic diseases and during AIT. Here, we focused on immune responses to grass pollen allergens and found that such epitopes were commonly recognized before initiation of AIT and that AIT commonly resulted in increased antibody production against additional epitopes already after 1 year of treatment. The linear epitope binding patterns were highly individual, both for subjects subjected to and for individuals not subjected to AIT. Still, antibodies against some linear epitopes were commonly developed during AIT. For example, the two rigid domains found in grass pollen group 5 allergens have previously been associated to a diversity of discontinuous epitopes. Here, we present evidence that also the flexible linker, connecting these domains, contains regions of linear epitopes against which antibodies are developed during AIT. We also describe some commonly recognized linear epitopes on Phl p 2 and suggest how antibodies against these epitopes may contribute to or prevent allergy in relation to a well-defined stereotyped/public IgE response against the same allergen. Finally, we identify epitopes that induce cross-reactive antibodies, but also antibodies that exclusively bind one of two highly similar variants of a linear epitope. Our findings highlight the complexity of antibody recognition of linear epitopes, with respect to both the studied individuals and the examined allergens. We expect that many of the findings in this study can be generalized also to discontinuous epitopes and that allergen peptide microarrays provide an important tool for enhancing the understanding of allergen-specific antibodies in allergic disease and during AIT.

12.
Front Immunol ; 13: 888555, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720344

RESUMO

The immunoglobulin genes of inbred mouse strains that are commonly used in models of antibody-mediated human diseases are poorly characterized. This compromises data analysis. To infer the immunoglobulin genes of BALB/c mice, we used long-read SMRT sequencing to amplify VDJ-C sequences from F1 (BALB/c x C57BL/6) hybrid animals. Strain variations were identified in the Ighm and Ighg2b genes, and analysis of VDJ rearrangements led to the inference of 278 germline IGHV alleles. 169 alleles are not present in the C57BL/6 genome reference sequence. To establish a set of expressed BALB/c IGHV germline gene sequences, we computationally retrieved IGHV haplotypes from the IgM dataset. Haplotyping led to the confirmation of 162 BALB/c IGHV gene sequences. A musIGHV398 pseudogene variant also appears to be present in the BALB/cByJ substrain, while a functional musIGHV398 gene is highly expressed in the BALB/cJ substrain. Only four of the BALB/c alleles were also observed in the C57BL/6 haplotype. The full set of inferred BALB/c sequences has been used to establish a BALB/c IGHV reference set, hosted at https://ogrdb.airr-community.org. We assessed whether assemblies from the Mouse Genome Project (MGP) are suitable for the determination of the genes of the IGH loci. Only 37 (43.5%) of the 85 confirmed IMGT-named BALB/c IGHV and 33 (42.9%) of the 77 confirmed non-IMGT IGHV were found in a search of the MGP BALB/cJ genome assembly. This suggests that current MGP assemblies are unsuitable for the comprehensive documentation of germline IGHVs and more efforts will be needed to establish strain-specific reference sets.


Assuntos
Cadeias Pesadas de Imunoglobulinas , Região Variável de Imunoglobulina , Animais , Haplótipos , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Análise de Sequência de DNA
13.
Methods Mol Biol ; 2453: 279-296, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35622332

RESUMO

High-throughput sequencing of adaptive immune receptor repertoires (AIRR, i.e., IG and TR) has revolutionized the ability to carry out large-scale experiments to study the adaptive immune response. Since the method was first introduced in 2009, AIRR sequencing (AIRR-Seq) has been applied to survey the immune state of individuals, identify antigen-specific or immune-state-associated signatures of immune responses, study the development of the antibody immune response, and guide the development of vaccines and antibody therapies. Recent advancements in the technology include sequencing at the single-cell level and in parallel with gene expression, which allows the introduction of multi-omics approaches to understand in detail the adaptive immune response. Analyzing AIRR-seq data can prove challenging even with high-quality sequencing, in part due to the many steps involved and the need to parameterize each step. In this chapter, we outline key factors to consider when preprocessing raw AIRR-Seq data and annotating the genetic origins of the rearranged receptors. We also highlight a number of common difficulties with common AIRR-seq data processing and provide strategies to address them.


Assuntos
Genes de Imunoglobulinas , Sequenciamento de Nucleotídeos em Larga Escala , Anticorpos/genética , Humanos , Anotação de Sequência Molecular , Receptores Imunológicos/genética
15.
Front Immunol ; 12: 730105, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671351

RESUMO

Upstream and downstream sequences of immunoglobulin genes may affect the expression of such genes. However, these sequences are rarely studied or characterized in most studies of immunoglobulin repertoires. Inference from large, rearranged immunoglobulin transcriptome data sets offers an opportunity to define the upstream regions (5'-untranslated regions and leader sequences). We have now established a new data pre-processing procedure to eliminate artifacts caused by a 5'-RACE library generation process, reanalyzed a previously studied data set defining human immunoglobulin heavy chain genes, and identified novel upstream regions, as well as previously identified upstream regions that may have been identified in error. Upstream sequences were also identified for a set of previously uncharacterized germline gene alleles. Several novel upstream region variants were validated, for instance by their segregation to a single haplotype in heterozygotic subjects. SNPs representing several sequence variants were identified from population data. Finally, based on the outcomes of the analysis, we define a set of testable hypotheses with respect to the placement of particular alleles in complex IGHV locus haplotypes, and discuss the evolutionary relatedness of particular heavy chain variable genes based on sequences of their upstream regions.


Assuntos
Regiões 5' não Traduzidas , Biologia Computacional , Perfilação da Expressão Gênica , Genes de Cadeia Pesada de Imunoglobulina/genética , Sequenciamento de Nucleotídeos em Larga Escala , Cadeias Pesadas de Imunoglobulinas , Região Variável de Imunoglobulina , Alelos , Bases de Dados Genéticas , Evolução Molecular , Haplótipos , Humanos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Transcriptoma
16.
Front Immunol ; 12: 808932, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095897

RESUMO

Spike-specific antibodies are central to effective COVID19 immunity. Research efforts have focused on antibodies that neutralize the ACE2-Spike interaction but not on non-neutralizing antibodies. Antibody-dependent phagocytosis is an immune mechanism enhanced by opsonization, where typically, more bound antibodies trigger a stronger phagocyte response. Here, we show that Spike-specific antibodies, dependent on concentration, can either enhance or reduce Spike-bead phagocytosis by monocytes independently of the antibody neutralization potential. Surprisingly, we find that both convalescent patient plasma and patient-derived monoclonal antibodies lead to maximum opsonization already at low levels of bound antibodies and is reduced as antibody binding to Spike protein increases. Moreover, we show that this Spike-dependent modulation of opsonization correlate with the outcome in an experimental SARS-CoV-2 infection model. These results suggest that the levels of anti-Spike antibodies could influence monocyte-mediated immune functions and propose that non-neutralizing antibodies could confer protection to SARS-CoV-2 infection by mediating phagocytosis.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Opsonização/imunologia , Fagocitose/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Monoclonais/imunologia , Linhagem Celular , Células HEK293 , Humanos , Testes de Neutralização/métodos
17.
J Allergy Clin Immunol ; 147(3): 1077-1086, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32791163

RESUMO

BACKGROUND: The interaction of allergens and allergen-specific IgE initiates the allergic cascade after crosslinking of receptors on effector cells. Antibodies of other isotypes may modulate such a reaction. Receptor crosslinking requires binding of antibodies to multiple epitopes on the allergen. Limited information is available on the complexity of the epitope structure of most allergens. OBJECTIVES: We sought to allow description of the complexity of IgE, IgG4, and IgG epitope recognition at a global, allergome-wide level during allergen-specific immunotherapy (AIT). METHODS: We generated an allergome-wide microarray comprising 731 allergens in the form of more than 172,000 overlapping 16-mer peptides. Allergen recognition by IgE, IgG4, and IgG was examined in serum samples collected from subjects undergoing AIT against pollen allergy. RESULTS: Extensive induction of linear peptide-specific Phl p 1- and Bet v 1-specific humoral immunity was demonstrated in subjects undergoing a 3-year-long AIT against grass and birch pollen allergy, respectively. Epitope profiles differed between subjects but were largely established already after 1 year of AIT, suggesting that dominant allergen-specific antibody clones remained as important contributors to humoral immunity following their initial establishment during the early phase of AIT. Complex, subject-specific patterns of allergen isoform and group cross-reactivities in the repertoires were observed, patterns that may indicate different levels of protection against different allergen sources. CONCLUSIONS: The study highlights the complexity and subject-specific nature of allergen epitopes recognized following AIT. We envisage that epitope deconvolution will be an important aspect of future efforts to describe and analyze the outcomes of AIT in a personalized manner.


Assuntos
Alérgenos/metabolismo , Antígenos de Plantas/metabolismo , Dessensibilização Imunológica/métodos , Epitopos de Linfócito B/metabolismo , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Pólen/imunologia , Rinite Alérgica Sazonal/imunologia , Adulto , Alérgenos/imunologia , Antígenos de Plantas/imunologia , Betula , Mapeamento de Epitopos , Epitopos de Linfócito B/imunologia , Feminino , Humanos , Imunoglobulina E/metabolismo , Isotipos de Imunoglobulinas/metabolismo , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Peptídeos/imunologia , Proteínas de Plantas/imunologia , Poaceae , Rinite Alérgica Sazonal/terapia
18.
Sci Rep ; 10(1): 1546, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005942

RESUMO

Bispecific antibodies come in many different formats, including the particularly interesting two-in-one antibodies, where one conventional IgG binds two different antigens. The IgG format allows these antibodies to mediate Fc-related functionality, and their wild-type structure ensures low immunogenicity and enables standard methods to be used for development. It is however difficult, time-consuming and costly to generate two-in-one antibodies. Herein we demonstrate a new approach to create a similar type of antibody by combining two different variable heavy (VH) domains in each Fab arm of an IgG, a tetra-VH IgG format. The VHs are used as building blocks, where one VH is placed at its usual position, and the second VH replaces the variable light (VL) domain in a conventional IgG. VH domains, binding several different types of antigens, were discovered and could be rearranged in any combination, offering a convenient "plug and play" format. The tetra-VH IgGs were found to be functionally tetravalent, binding two antigens on each arm of the IgG molecule simultaneously. This offers a new strategy to also create monospecific, tetravalent IgGs that, depending on antigen architecture and mode-of-action, may have enhanced efficacy compared to traditional bivalent antibodies.


Assuntos
Anticorpos Biespecíficos/metabolismo , Linfócitos B/imunologia , Imunoglobulina G/metabolismo , Animais , Anticorpos Biespecíficos/genética , Sítios de Ligação/genética , Antígenos CD40/imunologia , Proliferação de Células , Células Cultivadas , Humanos , Imunoglobulina G/genética , Ligante OX40/imunologia , Ligação Proteica , Engenharia de Proteínas , Transdução de Sinais , Anticorpos de Cadeia Única/genética
19.
Nucleic Acids Res ; 48(D1): D964-D970, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31566225

RESUMO

High-throughput sequencing of the adaptive immune receptor repertoire (AIRR-seq) is providing unprecedented insights into the immune response to disease and into the development of immune disorders. The accurate interpretation of AIRR-seq data depends on the existence of comprehensive germline gene reference sets. Current sets are known to be incomplete and unrepresentative of the degree of polymorphism and diversity in human and animal populations. A key issue is the complexity of the genomic regions in which they lie, which, because of the presence of multiple repeats, insertions and deletions, have not proved tractable with short-read whole genome sequencing. Recently, tools and methods for inferring such gene sequences from AIRR-seq datasets have become available, and a community approach has been developed for the expert review and publication of such inferences. Here, we present OGRDB, the Open Germline Receptor Database (https://ogrdb.airr-community.org), a public resource for the submission, review and publication of previously unknown receptor germline sequences together with supporting evidence.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Genômica , Receptores Imunológicos/genética , Genômica/métodos , Humanos , Software , Navegador
20.
Front Immunol ; 11: 603980, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33717051

RESUMO

Extensive diversity has been identified in the human heavy chain immunoglobulin locus, including allelic variation, gene duplication, and insertion/deletion events. Several genes have been suggested to be deleted in many haplotypes. Such findings have commonly been based on inference of the germline repertoire from data sets covering antibody heavy chain encoding transcripts. The inference process operates under conditions that may limit identification of genes transcribed at low levels. The presence of rare transcripts that would indicate the existence of poorly expressed alleles in haplotypes that otherwise appear to have deleted these genes has been assessed in the present study. Alleles IGHV1-2*05, IGHV1-3*02, IGHV4-4*01, and IGHV7-4-1*01 were all identified as being expressed from multiple haplotypes, but only at low levels, haplotypes that by inference often appeared not to express these genes at all. These genes are thus not as commonly deleted as previously thought. An assessment of the 5' untranslated region (up to and including the TATA-box), the signal peptide-encoding part of the gene, and the 3'-heptamer suggests that the alleles have no or minimal sequence difference in these regions in comparison to highly expressed alleles. This suggest that they may be able to participate in immunoglobulin gene rearrangement, transcription and translation. However, all four poorly expressed alleles harbor unusual sequence variants within their coding region that may compromise the functionality of the encoded products, thereby limiting their incorporation into the immunoglobulin repertoire. Transcripts based on IGHV7-4-1*01 that had undergone somatic hypermutation and class switch had mutated the codon that encoded the unusual residue in framework region 3 (cysteine 92; located far from the antigen binding site). This finding further supports the poor compatibility of this unusual residue in a fully functional protein product. Indications of a linkage disequilibrium were identified as IGHV1-2*05 and IGHV4-4*01 co-localized to the same haplotypes. Furthermore, transcripts of two of the poorly expressed alleles (IGHV1-3*02 and IGHV4-4*01) mostly do not encode in-frame, functional products, suggesting that these alleles might be essentially non-functional. It is proposed that the functionality status of immunoglobulin genes should also include assessment of their ability to encode functional protein products.


Assuntos
Variação Genética , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina , Bases de Dados Genéticas , Deleção de Genes , Perfilação da Expressão Gênica , Rearranjo Gênico , Genes de Cadeia Pesada de Imunoglobulina , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Switching de Imunoglobulina , Hipermutação Somática de Imunoglobulina , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...